Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.

Identifieur interne : 000446 ( Main/Exploration ); précédent : 000445; suivant : 000447

Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.

Auteurs : Insiya Fidai [États-Unis] ; Christine Wachnowsky [États-Unis] ; J A Cowan [États-Unis]

Source :

RBID : pubmed:27878189

Descripteurs français

English descriptors

Abstract

Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.

DOI: 10.1039/c6mt00193a
PubMed: 27878189
PubMed Central: PMC5167678


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.</title>
<author>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University</wicri:regionArea>
<wicri:noRegion>The Ohio State University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Ohio State Biochemistry Program, The Ohio State University, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Ohio State Biochemistry Program, The Ohio State University</wicri:regionArea>
<wicri:noRegion>The Ohio State University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University</wicri:regionArea>
<wicri:noRegion>The Ohio State University</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27878189</idno>
<idno type="pmid">27878189</idno>
<idno type="doi">10.1039/c6mt00193a</idno>
<idno type="pmc">PMC5167678</idno>
<idno type="wicri:Area/Main/Corpus">000389</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000389</idno>
<idno type="wicri:Area/Main/Curation">000389</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000389</idno>
<idno type="wicri:Area/Main/Exploration">000389</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.</title>
<author>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University</wicri:regionArea>
<wicri:noRegion>The Ohio State University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Ohio State Biochemistry Program, The Ohio State University, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Ohio State Biochemistry Program, The Ohio State University</wicri:regionArea>
<wicri:noRegion>The Ohio State University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University</wicri:regionArea>
<wicri:noRegion>The Ohio State University</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Metallomics : integrated biometal science</title>
<idno type="eISSN">1756-591X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ferredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Ferrédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ferredoxins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Ferrédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27878189</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1756-591X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2016</Year>
<Month>12</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Metallomics : integrated biometal science</Title>
<ISOAbbreviation>Metallomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>1283-1293</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fidai</LastName>
<ForeName>Insiya</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wachnowsky</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Ohio State Biochemistry Program, The Ohio State University, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. cowan.2@osu.edu and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI072443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM095450</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Metallomics</MedlineTA>
<NlmUniqueID>101478346</NlmUniqueID>
<ISSNLinking>1756-5901</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005288">Ferredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005288" MajorTopicYN="N">Ferredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27878189</ArticleId>
<ArticleId IdType="doi">10.1039/c6mt00193a</ArticleId>
<ArticleId IdType="pmc">PMC5167678</ArticleId>
<ArticleId IdType="mid">NIHMS832009</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2002 Jul 16;41(28):8876-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2015 Feb 11;51(12):2253-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25556595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Jun 22;49(24):4945-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20481466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3088-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23208207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Mar;28(5):1851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Apr 15;379(Pt 2):433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14720122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Sep 14;21(19):4762-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6753926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1823(2):484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 Jun 1;237(2):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 23;35(29):9488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Nov 19;136(46):16240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 1997 Jan;62(1):124-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9029726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2012 Sep;3(9):714-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22886498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):825-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 16;277(33):29810-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12886008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Jul 31;124(30):8774-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12137512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 May;100:61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1493-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25245479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jul 4;134(26):10745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(9):3182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2000 Sep 1;40(4):590-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jun 12;46(23):6812-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2007 Aug 14;(30):3192-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Mar 6;581(5):935-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17303126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Jun 30;54(25):3871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26016389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 May 20;42(19):5784-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12741836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):887-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27590019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Aug 11;48(31):7512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19722697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Dec 30;137(51):16133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jul;278(14):2525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22203963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Sep 19;134(37):15213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2014 Feb;137(Pt 2):366-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24334290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13449-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11834738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 May;5(5):e1000497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 May 7;47(17):4989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):608-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1436-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25510311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jan 14;137(1):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 20;40(46):14069-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Nov;27(11):545-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jan 29;41(4):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11802718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2002 Apr;7(4-5):526-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11941510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Sep 19;45(37):11087-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964969</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Fidai, Insiya" sort="Fidai, Insiya" uniqKey="Fidai I" first="Insiya" last="Fidai">Insiya Fidai</name>
</noRegion>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<name sortKey="Wachnowsky, Christine" sort="Wachnowsky, Christine" uniqKey="Wachnowsky C" first="Christine" last="Wachnowsky">Christine Wachnowsky</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000446 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000446 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27878189
   |texte=   Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27878189" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020